

Stereo- and Spinselectivity of Primary (Singlet) and Secondary (Triplet) Norrish Type II Reactions¹

Axel G. Griesbeck*, Andreas Henz, Wolfgang Kramer and Peter Wamser Institut für Organische Chemie, Universität zu Köln, Greinstr. 4, D-50939 Köln, Germany

Karl Peters and Eva-Maria Peters

Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

Received 5 November 1997; revised 15 December 1997; accepted 18 December 1997

ABSTRACT: The influence of reactive conformation and substitution pattern on the Norrish Type II reactivity and selectivity of singlet-excited phthalimides was investigated. Only the cis-diasteroisomer of the 4-tert.-butyl cyclohexylamine derivatives 1 underwent Yang cyclization. The phthaloyl leucine esters 3a and 3b both gave primarily Yang cyclization with subsequent ring expansion. As a secondary photoreaction, 3a gave Norrish II cleavage solely, wheras photolysis of the tert.-butyl ester 3b resulted in a 1:1 mixture of Norrish II cleavage and Yang cyclization product 4 and 5. © 1998 Elsevier Science Ltd. All rights reserved.

The reactivity and selectivity of electronically excited carbonyl compounds in CH-activation reactions have been studied in detail in the last decades.² One important influencing factor is the multiplicity of the substrate, i.e. the lifetime and the conformational flexibility are dictating the primary event of the reaction. After Norrish II abstraction of a hydrogen atom from the γ-CH-position, the competition of cleavage and Yang cyclization³ are controlled by the geometry of the 1,4-biradical either during ISC (for triplets) or directly after CH-homolysis (for singlets).⁴ Phthalimides are highly useful chromophors in order to study the behaviour of singlets because only the corresponding short-lived phthalimide singlets are capable of direct homolytic CH-activation (triplets are reactive in PET reactions).⁵ Thus, the conformational situation at the ground state level can be correlated with its photochemical behaviour. We have studied this concept using the *cis*- and *trans*-1-tert.-butyl-4-phthalimido cyclohexanes *cis*-1 and *trans*-1, respectively.

Scheme 1. Yang cyclization of cis-1

In trans-1 the phthalimido group is located in an equatorial position, for cis-1 a twist geometry has been reported as the conformational ground state.⁶ Wereas cis-1 gave the tricyclic benzoazepine-1,5-dione 2^7 in good yields upon irradiation, trans-2 was not reactive. Molecular mechanics (MM2) and semiempirical (PM3) calculations indicated, that the most important factor for the reactivity of N-alkyl phthalimide singlets is the angle Δ (C-H-O=C) which (basis of calculation: 12 substrates) is $100\pm5^\circ$

for reactive substrates and 82±5° for unreactive substrates.⁸ The dihedral angle ω (C_{α} -C=O··H) can approach optimal values of 0° to maximum 35° for all substrates. The PM3-calculated Δ values of *cis*-1 and *trans*-1 are 101° and 88°, respectively. This correlation has also been found for the competition between (slow, but thermodynamically favourable) β - versus (rapid) γ - or δ -CH-abstraction in the photochemistry of N-phthaloyl α -amino acids.⁹

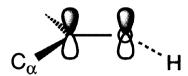


Fig.1 . Optimal approach for CH-abstraction

As conformationally more flexible model substrates, the leucine derivatives 3a and 3b were investigated. ¹⁰ The one-photon transformation reported for the isoleucine case was not observed for 3, i.e. deuterium was incorporated at the α -position of product 4D when the reaction was performed in deuterated methanol. Thus, a sequence of a primary (singlet) Yang cyclization and a secondary (triplet) Norrish II cleavage leads to the formation of the benzoazepine-1,5-diones 4.

Scheme 2. Yang cyclization followed by Norrish II cleavage of 3a

We were not able to detect (by NMR or GC) the intermediary isopropyl-substituted intermediate 6. Thus, the secondary Norrish reaction must be much more efficient, at least by a factor of 50. This assumption is reasonable, because quantum yields for Norrish II cleavage reactions with triplet acetophenone analogs are in the order of 0.7 to 1.0,¹¹ whereas the corresponding reactions with singlet phthalimides are in the order of 0.02 to 0.05.¹²

Scheme 3. Mechanism of the photochemical transformations of leucine derivatives

A remarkable effect was observed with the N-phthaloyl leucin *tert*.-butyl ester 3b: beside 50% of the regular Yang cyclization / Norrish II cleavage product 4H, another 50% of a cyclobutanol 5 was observed. The tricyclic "double Yang product" showed only one set of resonance lines in proton and

carbon NMR, indicating that only one out of 8 possible diastereo-isomers was formed. The X-ray structure analysis of 5¹³ showed that the cyclobutane ring is *trans*-fused with respect to the ester group. Thus, the isoproyl group in the corresponding precursor molecule X also must be located *trans*.

Scheme 4. Two subsequent Yang cyclizations of 3b

From molecular mechanics calculations we concluded the following mechanistic scenario: the methyl and the tert.-butyl ester 3a and 3b do not strongly differ with respect to their ground-state conformational distribution, i.e. cis and trans-6 can be formed in both cases. Whereas for cis-6 the Yang II cleavage process dominates irrespectively of the ester group, the diastereoisomeric intermediate trans-6 prefers Yang cyclization in case of the tert.-butyl ester.

We are currently working on independent syntheses of compounds 6 in order to corroborate this unusual chemoselectivity which is correlated with the reactive conformations of the Norrish II biradical intermediates

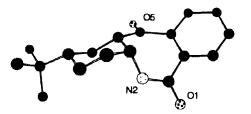


Fig. 2. Crystal structure of compound 2

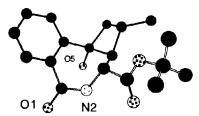


Fig. 3. Crystal structure of compound 5

ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemeinschaft (Project Gr 881 / 7-1, 7-2, and 7-3) and the Fonds der Chemischen Industrie.

REFERENCES and NOTES

1. Part of the Ph.D. thesis of A. H., Univ. of Würzburg, 1996, and the projected Ph.D. thesis of W. K., Univ. of Cologne.

- a. Wagner, P. J., Park, B.-S. Org. Photochem. 1991, 11, 227-366; b. Wagner, P. J.
 Handbook of Photochemistry and Photobiology, CRC Press: Boca Raton, 1995, 449-470.
- 3. The term Yang cyclization has been suggested by P. J. Wagner (ref. 2a) for the 1,4-biradical combination process of Norrish II biradicals.
- 4. e.g. Griesbeck, A. G., Henz, A., Hirt, J., Ptatschek, V., Engel, T., Löffler, D., Schneider, F. W. Tetrahedron 1994, 50, 701-714.
- 5. Griesbeck, A. G., Hirt, J., Peters, K., Peters, E.-M., von Schnering, H. G. Chem. Eur J. 1996, 2, 1388.
- 6. Booth, H., Org. Magn. Res. 1979, 12, 63.
- 7. The crystals of 2^{14} (C₁₈H₂₃NO₂, M = 285.39, from acetone) are monoclinic, space group P2₁/n, a = 1202.5(7), b = 1600.5(8), c = 876.6(3) pm; $\beta = 109.53(3)^\circ$; $V = 1590(1) \times 10^6$ pm³; Z = 4; $d_{calc} = 1.192$ g/cm³. Data collection: Siemens R3m/V diffractometer, MoK_Q, graphite monochromator, Wyckoff-scan, theta range [°]: 1.75-27.5, crystal dimensions: 0.2 x 1.15 x 0.15 mm; no. refl. measd.: 4010, no. unique refl.: 3645, no. refl. $F > 3\sigma(F)$: 2679; R, R_w : 0.058, 0.054.-m.p.: 234-235°C.- IR (CCl₄): 2930, 1725, 1690, 1640, 1380, 1355, 1340 cm⁻¹.- ¹H NMR (CDCl₃, 250 MHz) δ 0.92 (s, 9H), 1.25 (m, 2H), 1.43 (m, 1H), 1.65-2.39 (4 m, 4H), 2.56 (m, 1H), 4.20 (m, 1H), 6.57 (s, 1H), 7.52-7.89 (m, 4H).- ¹³C NMR (CDCl₃, 63 MHz) δ 21.1 (t), 23.5 (t), 29.8 (t), 27.4 (q), 32.7 (s), 47.3 (d), 47.8 (d), 56.5 (d), 128.0 (d), 129.4 (d), 132.0 (d), 132.1 (s), 137.2 (s), 170.1 (s), 205.1 (s).
- 8. This strict behaviour is less pronounced for ketones which have been intensively investigated in the solid state; e.g.: Scheffer, J. R., Org. Photochem. 1987, 8, 249.
- 9. Griesbeck, A. G. Chimia, in print.
- 10. Griesbeck, A. G., Mauder, H., Müller, I. Chem. Ber. 1992, 125, 2467.
- 11. Lewis, F. D., Hilliard, T. A. J. Am. Chem. Soc. 1972, 94, 3852.
- 12. Griesbeck, A. G., Hirt, J., Kramer, W., Dallakian, P. Tetrahedron, submitted.
- 13. The crystals of 5^{14} (C₁₈H₂₃NO₄, M = 317.38, from acetone) are monoclinic, space group P2₁, a = 847.5(1), b = 1042.7(2), c = 1060.4(2) pm; $\beta = 111.851(5)^\circ$; $V = 869.7(4) \times 10^6$ pm³; Z = 2; $d_{calc} = 1.212$ g/cm³. Data collection: Siemens R3m/V diffractometer, MoK_{α}, graphite monochromator, Wyckoff-scan, theta range [°]: 1.75-27.5, crystal dimensions: 0.4 x 0.45 x 0.75 mm; no. refl. measd.: 4260, no. unique refl.: 3990, no. refl. $F > 3\sigma(F)$: 3710; R, R_w : 0.048, 0.048.-m.p.: 203-204°C.-IR (CCl₄): 3398, 2926, 2855, 1734, 1719, 1651, 1459, 1370, 1155 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 0.90 (m, 1H), 1.20 (d, 6.0 Hz, 3H), 1.46 (s, 9H), 1.93 (m, 1H), 2.54 (dd, 8.4, 11.5 Hz, 1H), 3.07 (dd, 6.2, 11.5 Hz, 1H), 4.67 (dd, 5.8, 11.5 Hz, 1H), 7.38-7.68 (m, 4H); ¹³C NMR (CDCl₃, 63 MHz) δ 20.6 (q), 25.5 (d), 27.9 (q), 40.0 (t), 57.7 (d), 61.7 (d), 74.3 (s), 83.3 (s), 125.1 (d), 129. 1(d), 130.8 (d), 130.9 (d), 134.9 (s), 138.8 (s), 169.0 (s), 170.0 (s).
- 14. The coordinates of 2 and 5 can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.